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Small variations for Mo isotopes have been ob-
served recently in the Allende meteorite and in iron
meteorites, mesosiderites, and pallasites, using ICP-
MS [1]. Large effects for Mo have been reported for
leaches of Orgueil [2] and in SiC and graphite from
Murchison [3-5]. Variations for Mo in bulk Allende
and in Murchison have also been presented by NTIMS
[6]. Effects in Ru isotopes can define further the pre-
served exotic r, s, and p contributions in this mass re-
gion, and possible effects in **Ru and *’Ru from **Tc
(4.2 Ma half-life) and *Tc (0.21 Ma half-life). Previ-
ous attempts at determination of Ru isotopes yielded
no resolved effects [7-10]. The present work repre-
sents a substantial improvement in precision over the
earlier work.

We have developed chemical and mass spectromet-
ric analytical techniques to determine the Ru isotope
compositions in terrestrial standards and in meteorites.
Because the Mo isotope interferences can affect *’Ru
and **Ru, we have used “Ru/'°'Ru for the mass frac-
tionation correction and applied the exponential law.
Through improved chemical separations, we have re-
duced the Mo interference to **Mo/**Ru<0.00002. All
measurements were obtained in the new mass spec-
trometry laboratory at JPL, using the ThermoFinnigan
Triton, in static mode. The results on terrestrial stan-
dards of different chemical composition show external
precision (reproducibility) of isotope ratio measure-
ments to better than 0.3gu (20) for '“Ru/'*'Ru, 0.6gu
for '2Ru/'"'Ru and '“Ru/'"'Ru, and lgu to 2eu for
%Ru/'""'Ru and **Ru/'"'Ru. The range of reproducibil-
ity for normal Ru is shown as dashed lines in Fig. 1.

The results are shown in Fig. 1. The y-axis lists the
sample sequence number. Ordinary chondrites meas-
ured are: Olivenza (LLS5, #1 & #2), Portales Valley
(H4, #3), Ransom (H4, #4), Garnet (H4, #5). These
ordinary chondrites plot within the error envelopes of
the terrestrial standards for all Ru isotopes. The minor
isotopes *°Ru and **Ru, show slightly larger uncertain-
ties and scatter, but no anomalies. In contrast, analyses
of two whole rock samples of the Allende carbona-
ceous chondrite (#6-7) show hints of enrichments in
%Ru, ®Ru and 'Ru and well-resolved depletions in
"Ru of 1.2 and 1.6 gu. The measurements on Allende
were obtained after the ordinary chondrite and iron
meteorite analyses. Iron meteorite metal from Canyon
Diablo (IA, #8) and Pitts (IB, #9) show normal values.
For three ITAB irons, Bennett County (#10), Negrillos
(#11) and Coahuila (#12), all Ru isotopes except '“Ru,
show normal abundances. These samples show well-

resolved depletions in 'Ru/'*'Ru, from 0.5+0.14 to
0.75+0.09 eu . Similar results were obtained for IIIAB
irons, Cape York (#13), Grant (#14), Acuna (#15),
Bella Roca (#16) and Tres Castillos (#17). They show
€190 ranges also from -0.5+0.08 to -0.76+0.21. Gibeon
(IVA, #18) yields g9y = -0.40+0.06. Multiple analyses
of Hoba (IVB, #19-21) confirm the presence of a
larger gjop effect (-1.08£0.11 eu). Tlacotepec
(IVB,#22) and Pinon (An, #23) also show g effects
close to —1 gu. Analyses of 3 pallasites, Salta (#24),
Springwater (#25) and Thiel Mountain (#26) yield &9
ranges from —0.4+0.08 to —0.58+0.05. Only Thiel
Mountain plots outside of the error envelopes and
shows a resolvable effect. In summary, we have found
endemic isotope anomalies in Ru. For the normaliza-
tion used, we observe up to 1 eu depletion in the pure
s-process isotope, '’Ru in groups IIAB, IIIAB, IVAB
and An irons and possibly in a pallasite. Group IAB
irons and ordinary chondrites show a normal Ru com-
position. The Allende WR samples show larger g
effects and hints of added effects in *°Ru, **Ru and
'Ru. The presence of Ru isotopic effects is clearly
resolved, but the attribution of the isotope anomalies to
specific isotopes depends on the choice of normaliza-
tion for isotope fractionation.

In Fig. 2, we use the Hoba data to demonstrate the
effect of different mass fractionation normalizations:

Case 0. For the normalization to *Ru/'*'Ru (dia-
monds), we obtain normal Ru isotope ratios except for
well-resolved deficits in 'Ru/!"'Ru (€100=-1.08+0.11).

Case 1. Rotating the isotope pattern, by normaliza-
tion to '"Ru/'*'Ru (triangles) yields large enrichments
(5.9 and 3.2 €u) in the two p-process isotopes (**Ru
and **Ru) and a +2.16 gu effect in 1- & s-process *’Ru.
It also yields large depletions in the r- & s- process
12Ru (-1.3 gu) and in the pure r-process '“*Ru (-2.7¢u).
This normalization would require the presence of both
p- and s- process excesses for Ru.

Case 2. Normalization to “Ru/'“Ru (squares)
yields depletions in *Ru and **Ru and enrichments in
2Ry and '"™Ru.

Case 3. Finally, the Hoba Ru data (in the
%Ru/""'Ru normalization) were re-calculated by add-
ing Ru with an isotope composition obtained from s-
process calculations [11], with the aim to reduce the
observed deficit for the s-process only '*Ru to zero. In
this Case, after addition of s-process Ru and renor-
malization using *’Ru/'*'Ru, other Ru isotopes also
show close to normal values (circles, Fig. 2).
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meteorites did not show any correlation with
197pd as inferred from excess in '*’Ag in iron
meteorites and pallasites [13]. This is consis-
tent with the short half-life of **Tc and the
much smaller expected chemical fractionation
for Tc/Ru relative to the volatility-controlled,
large Pd/Ag fractionation.
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